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a b s t r a c t

Due to climatic change, many Alpine glaciers have significantly retreated during the last
century. In this study we perform the numerical simulation of the temporal and spatial
change of Rhonegletscher, Swiss Alps, from 1874 to 2007, and from 2007 to 2100.

Given the shape of the glacier, the velocity of ice u is obtained by solving a 3D nonlinear
Stokes problem with a nonlinear sliding law along the bedrock–ice interface. The shape of
the glacier is updated by computing the volume fraction of ice u, which satisfies a transport
equation. The accumulation due to snow fall and the ablation due to melting is accounted
by adding a source term to the transport equation.

A decoupling algorithm allows the two above problems to be solved using different
numerical techniques. The nonlinear Stokes problem is solved on a fixed, unstructured
finite element mesh consisting of tetrahedrons. The transport equation is solved using a
fixed, structured grid of smaller cells.

The numerical simulation, from 1874 to 2007, is validated against measurements. After-
wards, three different climatic scenarios are considered in order to predict the shape of
Rhonegletscher until 2100. A dramatic retreat of Rhonegletscher during the 21st century
is anticipated. Our results contribute to a better understanding of the impact of climatic
change on mountain glaciers.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Glaciers are relevant not only for tourism but also for the future management of natural risks, hydroelectric plants and
water supply for agriculture. Earth is in a warm, interglacial period, exacerbated by global warming resulting in the retreat
of the glaciers [19]. Since the end of the 19th century, glaciologists have documented the retreat of the glaciers in the Swiss
Alps (e.g. [23]).

The dynamics of a glacier are the result of different phenomena. In the upper part of the glacier snow fall exceeds snow
melt (accumulation), whereas icemelt is preponderant in the lower reaches of the glacier (ablation) because of higher tem-
peratures. Due to gravity, ice is flowing downvalley. When studying ice flow during years or centuries, ice can be considered
as an incompressible non-Newtonian fluid, governed by the mass and momentum conservation in the limit of a stationary
nonlinear Stokes flow. A sliding law is added on the bedrock to account for the basal motion. Mass conservation along the
ice–air interface yields a transport equation which can be used to determine the evolution of the glacier shape. A source term
– the so-called mass balance – must be added to the right hand side of this transport equation in order to take into account
. All rights reserved.
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accumulation or ablation. This term contains the climatic input of the model and several scenarios can be explored in order
to predict the future retreat of Alpine glaciers.

Most of the numerical simulations presented so far in glaciology have been performed using Lagrangian or Arbitrary
Lagrangian Eulerian methods, see for instance [5] or [27]. When considering ice flow during centuries, topological changes
may appear so that Eulerian methods such as Level Set [25] or Volume of Fluid (VOF) [29] seem to be more appropriate. Level
set methods in glaciology have been considered in [28] to compute the onset of crevasse formation in 2D. The VOF formu-
lation has been used in [20] to reconstruct stationary 3D glacier shapes.

In this paper, the different states of Rhonegletscher, Switzerland, are reconstructed in 3D over the period 1874–2007 and
predictions for the coming century are given. The evolution of Rhonegletscher in the past and in the future has previously
been studied using a flowline model and simple parametrizations of mass balance [32,34]. The determination of the glacier
surface mass balance over 133 years results from a combination of long-term measurements, performed by glaciologists, and
a parameter identification procedure that involves climate data and observations of surface elevation change [16]. Using the
mass balance data and the measured bedrock elevation [7] as boundary conditions the three dimensional ice flow model is
run for the period 1874 to 2007. The results of these simulations are compared to direct measurements. Based on climate
models in seasonal resolution [9], three climatic scenarios are defined allowing the computation of future mass balances
[17]. In combination with the 3D ice flow model, the future shape of Rhonegletscher is calculated from 2007 to 2100.

The paper is organized as follows: The mathematical model is presented in the next section and corresponds to the model
already presented in [20]. Boundary conditions are introduced that allow sliding along the bedrock–ice interface. The numer-
ical procedure presented in Section 3 also corresponds to [20]. At each time step, the velocity computation is decoupled from
the glacier shape computation, which allows different numerical techniques to be used for solving each of these two sub-
problems (see [1,3,22]). The computation of the mass balance is presented in Section 4 and follows a method described
in [16]. Finally, numerical results are presented in Section 5. The question of sliding boundary conditions is discussed and
numerical results are compared to measured changes in glacier length during the last century. Finally, forecasts for Rhone-
gletscher’s evolution until 2100, based on three different climatic scenarios [17], are reported.
2. The mathematical model

We are interested in computing the shape of a glacier between time t = 0 and t = T. Let K be a cavity of R3 in which the ice
domain is contained, see Fig. 1. At time t the ice domain is denoted by X(t), the bedrock–ice interface is CB(t) and the ice–air
interface is CA(t). Let QT be the ice region in the space-time domain:
Q T ¼ fðx; y; z; tÞ 2 K� ð0; TÞ; ðx; y; zÞ 2 XðtÞ; 0 < t < Tg;
and let u ¼ ðu; v;wÞ : QT ! R3 and p : Q T ! R be the ice velocity and pressure, respectively. When considering the motion of
a glacier during years or centuries, ice can be considered as an incompressible non-Newtonian fluid. Moreover, a dimension-
less scaling shows that inertial terms can be disregarded. Therefore, the mass and momentum equations reduce at time t to a
stationary nonlinear Stokes problem in the ice domain X(t):
Fig. 1. Notations. For convenience, the bedrock–ice interface CB(t) and the ice–air interface CA(t) are not represented.
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� 2divðleðuÞÞ þ rp ¼ qg; ð1Þ
divu ¼ 0: ð2Þ
Hereabove eðuÞ ¼ 1
2 ðruþruTÞ denotes the rate of strain rank 2 tensor and Glen’s flow law [13,18] holds for the viscosity

l = l(u). More precisely, for a given velocity field u, the viscosity l satisfies the following nonlinear equation:
1
2l
¼ A rm�1

0 þ 2l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
ðeðuÞ : eðuÞÞ

r !m�1
0
@

1
A; ð3Þ
where A is a positive number known as the rate factor, m P 1 is Glen’s exponent and r0 > 0 is a small regularization param-
eter which prevents infinite viscosity for zero strain (r0 = 0 in the original Glen’s law). It should be noted that A depends on
ice temperature but, since temperature varies very little in most Alpine glaciers, A can be taken as a constant for Rhoneglet-

scher. When m > 1, it is shown in [4] that l is a positive, strictly decreasing function with respect to s :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2 ðeðuÞ : eðuÞÞ

q
. The

viscosity l is upper-bounded by its value at s = 0 and has the following asymptotic behaviour when s goes to the infinity:
lðsÞ ¼ Oðs1
m�1Þ: ð4Þ
When m = 1, then l is constant and the above problem corresponds to a Newtonian fluid. In the framework of glaciology, m is
often taken equal to 3 [14], then Eq. (3) can be solved exactly using the Cardan formula, see Fig. 2.

The boundary conditions corresponding to (1) are the following. Since no force applies on the ice–air interface CA(t):
2leðuÞ � n� pn ¼ 0; ð5Þ
where n is the unit outer normal vector along the boundary of the ice domain X(t). Along the bedrock–ice interface CB(t), ice
may slip or not, according to the bedrock characteristics. Many sliding laws have been proposed, see for instance [8] for a
derivation from first principles and [11,30,33,31] for recent contributions. A nonlinear law relating the tangent stress to
the tangent velocity is considered here. Let CS

BðtÞ, C
NS
B ðtÞ be the portion of the bedrock–ice interface where slip, no-slip occurs,

respectively. The no-slip condition writes
u ¼ 0 on CNS
B ðtÞ; ð6Þ
whereas the slip condition is:
u � n ¼ 0 and 2leðuÞ � nð Þ � ti ¼ �au � ti i ¼ 1;2 on CS
BðtÞ; ð7Þ
where t1, t2 are two orthogonal vectors tangent to the boundary CS
BðtÞ. Hereabove, following [18, p. 454], a = a(u) is the slid-

ing coefficient that is given by
a ¼ Cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2 þw2
p

þ s0
� �1�1

m
; ð8Þ
where m is the Glen exponent, C is a positive value tuned from experiments and s0 is a small numerical parameter which
prevents infinite a for zero velocity.

The well-posedness of the nonlinear Stokes problem (1)–(3) supplemented by the boundary conditions (5), (6) in a pre-
scribed smooth domain X can be proved using the property (4), proceeding as in [4]. Please note that a similar result is
proved in [31], even when CNS

B is empty.
We now turn to the model for the volume fraction of ice. As in [20], the presence of ice is described by the characteristic

function u : K� ð0; TÞ ! R defined by:
uðx; y; z; tÞ ¼
1; if ðx; y; zÞ 2 XðtÞ;
0; else:

�
ð9Þ
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In absence of snow fall or melting, the volume fraction of ice would satisfy
Fig. 3.
The line
@u
@t
þ u � ru ¼ 0; ð10Þ
in a weak sense in the space–time. In other words, u is constant along the trajectories of the fluid particles which are given by
x0ðtÞ
y0ðtÞ
z0ðtÞ

0
B@

1
CA ¼

uðxðtÞ; yðtÞ; zðtÞÞ
vðxðtÞ; yðtÞ; zðtÞÞ
wðxðtÞ; yðtÞ; zðtÞÞ

0
B@

1
CA:
The strong advantage of the description (9) over an explicit internal boundary condition is that it allows the ice domain to
change its topology, we refer for instance to [29] for a review of numerical methods for solving the above equation. Also, the
interested reader should note that the transport equation (10) is formulated in the whole cavity K although the velocity u is
defined only in the ice domain X(t). As described in [22] and in Section 3.1 hereafter, the transport equation (10) is solved
numerically using a forward characteristics method. At each time step, the ice particles move along the trajectories, starting
from the ice region, thus there is no need to build an extrapolation of the ice velocity u in the empty part of the cavity
KnX(t).

On alpine glaciers, solid precipitation exceeds melt in their high-elevation regions and melt is predominant in the lower
reaches. The sum of snow fall and ice melt at every point of the glacier is termed the mass balance b, the elevation at which
b = 0 is the equilibrium line altitude ELA, see Fig. 3, and is at around 2950 m a.s.l. on Rhonegletscher nowadays [16]. A source
term must be added to the right hand side of (10) to account for accumulation or ablation. Let b(x,y,z, t) be the the water
equivalent of the snow or ice height added or removed along the ice–air interface CA(t) within one year, the so-called mass
balance function. In our model, this quantity is given by climate. For Rhonegletscher, it is based on the model described in
[16], which is presented in detail in Section 4.

Given the mass balance function b and following [20], Eq. (10) must be updated as follows:
@u
@t
þ u � ru ¼ bdCAðtÞ; ð11Þ
where dCA is the density of surface on the ice–air interface CA which satisfies, by definition:
Z
V

fdCAðtÞdV ¼
Z

V\CAðtÞ
fdr
for all volume V and all smooth function f. A physical interpretation can be obtained as follows. Consider an arbitrary volume
V contained in the cavity K and containing the ice–air interface CA(t), see Fig. 4. Integrating (11) over V yields, using the
divergence theorem:
d
dt

Z
V
udV þ

Z
@V

u � nudr ¼
Z

CAðtÞ\V
bdr; ð12Þ
thus the time derivative of the volume of ice contained within V plus the flux of ice entering or leaving V equals the amount
of ice added or removed by accumulation or ablation.

To summarize, our goal is to find the volume fraction of ice u in the whole cavity K, the velocity u and pressure p in the
ice domain, satisfying Eqs. (1), (2) and (11). Eq. (1) must be supplemented with the boundary conditions (5)–(7). At the initial
time, the volume fraction of ice u(x,y,z,0), or equivalently the initial ice domain X(0), must be provided.
The mass balance function b (2D figure). When b > 0 (respectively b < 0), there is accumulation (respectively ablation) of ice at the ice–air interface.
b = 0 marks the altitude of the equilibrium line (ELA).



Fig. 4. The mass conservation principle corresponding to (11) in an arbitrary volume V (2D figure) is given by (12).
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3. Numerical method

In order to decouple the computation of u to that of u, p, a time discretization is proposed. Two different space discret-
izations are then used for solving the transport problem (11) and the nonlinear Stokes problem (1), (2). The transport prob-
lem is solved using a structured grid of small cubic cells having size h, with the goal to minimize numerical diffusion. On the
other side, since the numerical resolution of the nonlinear Stokes problem is CPU time consuming, an unstructured mesh of
tetrahedrons with larger size H is used. The use of two different grids has shown to be very efficient for solving Newtonian
[22] and viscoelastic flows [1] with complex free surfaces. A good compromise between accuracy and efficiency is to choose
H ’ 5h with a time step such that the maximum CFL number (velocity times the time step divided by the cells’ spacing) is
close to 5. The use of an unstructured finite element mesh for the velocity allows complex bedrock geometries to be consid-
ered, whereas the use of a structured grid for the volume fraction of ice simplifies the implementation of post-processing
procedures to prevent numerical diffusion, see Section 3.2 hereafter. This numerical method has already been presented
in [20] to compute the stationary shape of a glacier.

3.1. Time discretization

The time discretization is now presented in details. Let t0, t1, . . . , tn, . . . be the discrete times at which approximations are
computed. For a given n, assume that an approximation un�1(x,y,z) of u(x,y,z, tn �1) is known for each (x,y,z) in the cavity K.
We now explain how to compute the new approximation un. Since un�1 is known, the ice region is defined to be
Xn�1 ¼ fðx; y; zÞ 2 K; un�1ðx; y; zÞ ¼ 1g;
the bedrock–ice interface Cn�1
B and the ice–air interface Cn�1

A can also be identified. We then solve the nonlinear Stokes prob-
lem that is to say find un�1 : Xn�1 ! R3 and pn�1 : Xn�1 ! R such that
� 2divðln�1eðun�1ÞÞ þ rpn�1 ¼ qg; ð13Þ
divun�1 ¼ 0; ð14Þ
plus zero force boundary condition along Cn�1
A and slip or no-slip boundary conditions along Cn�1

B as in (5)–(7). Hereabove,
ln�1 is the viscosity computed using (3) with velocity un�1 instead of u. Then, the transport problem
@u
@t
þ un�1 � ru ¼ bdCn�1

A
;

is solved between tn�1 and tn to obtain the new volume fraction of ice un. This transport problem is solved using a first-order
splitting scheme in time. The first step of this splitting consists, starting from un�1, in solving the transport problem with
zero on the right hand side
@u
@t
þ un�1 � ru ¼ 0;
between tn�1 and tn to obtain the predicted volume fraction of ice un�1/2. A forward characteristic method is advocated,
which yields the formula
un�1=2ðxþ ðtn � tn�1Þun�1ðxÞÞ ¼ un�1ðxÞ; ð15Þ
where we have set x = (x,y,z). The second step consists, starting from un�1/2, in solving
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@u
@t
¼ bdCn�1

A
;

between tn�1 and tn to obtain the new volume fraction of ice un. The Euler scheme is used which yields
un ¼ un�1=2 þ ðtn � tn�1ÞbndCn�1
A
; ð16Þ
with bn(x,y,z) = b(x,y,z, tn). The advantage of using this scheme is that it is unconditionally stable, even when the CFL number
(velocity times the time step divided by the cells’ spacing) is larger than one, see Section 3.2.

3.2. Space discretization with finite elements and structured cells

According to [22,1,3], two different space discretizations will be used to solve the nonlinear Stokes problem (13), (14) and
formula (15), (16), see Fig. 5. Since the volume fraction of ice is a discontinuous function across the ice–air interface, numer-
ical diffusion must be reduced as much as possible. For this purpose, the cavity K will be covered by a structured grid made
out of small cubic cells with size h. Moreover, two post-processing procedures are performed to prevent numerical diffusion
– a SLIC method, see for instance [29] – and artificial decompression. These two procedures have already been presented in
[22,1,3,20] and will not be expanded here. On the other side, since the numerical resolution of the nonlinear Stokes problem
is CPU time consuming, an unstructured finite element mesh made out of tetrahedrons with larger size H will be used, see
Fig. 5. The use of finite elements is judicious since the geometry of the cavity is complex, see Fig. 9. Also, the implementation
of the boundary conditions (5), (7) is easy within the framework of finite elements methods. It should be stressed that both
space discretizations are fixed and do not change with time. As detailed in Section 4.4 of [22], a hierarchic data structure
enables an efficient transfer of informations between the structured grid and the finite element mesh.

Assume that the old values un�1
ijk of the volume fraction of ice are available at each cubic cell with coordinates of center

(xi,yj,zk) contained in the cavity K. We now present more details of how to compute the new values un
ijk. The first task is to

define the ice domain on the finite element mesh. For this purpose, values of un�1
ijk are defined at the vertices of the finite

element mesh proceeding as in Section 4.2 of [22]. A tetrahedron is said to be iced if at least one of its four vertices has a
volume fraction of ice greater than 0.5. The ice domain Xn�1

H is then the union of all iced tetrahedrons. Both the ice–air inter-
face Cn�1

A;H and the bedrock–ice interface Cn�1
B;H can then be identified, the latter being split in two parts, namely Cn�1;NS

B;H (no-slip
b.c.) and Cn�1;S

B;H (slip b.c.). The finite element formulation corresponding to (13), (14) is as follows: Find the ice velocity
un�1

H : Xn�1
H ! R3 and the ice pressure pn�1

H : Xn�1
H ! R such that un�1

H ¼ 0 on Cn�1;NS
B;H and such that
þ 2
Z

Xn�1
H

ln�1eðun�1
H Þ : eðvÞdV �

Z
Xn�1

H

pn�1
H divvdV � qg

Z
Xn�1

H

vdV þ
Z

Cn�1;S
B;H

an�1ððun�1
H � t1Þðv � t1Þ

þ ðun�1
H � t2Þðv � t2ÞÞdrþ 1:e10

Z
Cn�1;S

B;H

ððun�1
H � nÞðv � nÞÞdr�

Z
Xn�1

H

divun�1
H qdV ¼ 0: ð17Þ
Here v and q are the velocity and pressure test functions, defined on Xn�1
H and such that v = 0 on Cn�1;NS

B;H . Also ln�1 (respec-
tively an�1) is defined by (3), (respectively (8)) with un�1

H in place of u. The term in the third line of (17) corresponds to a
penalization of u � n = 0 on Cn�1;S

B;H . The solution to the nonlinear problem (17) is sought in the space of continuous functions,
piecewise linear on the tetrahedrons of the finite element mesh. A stabilization term is added as in Section 4.3 of [22]. At
each time step, several linear Stokes problem are solved, freezing the viscosity and sliding coefficient, until convergence oc-
curs, see [20] for details. The number of iterations required for getting a small discrepancy of the solution (<1%, in practise)
decreases with the time step. When the time step is one year, very few iterations are needed, less than 5 in most cases.
The two grids (2D figure). The cavity K is meshed with unstructured finite elements having size H. Then, at each time step, the ice region is the union
e elements being filled with ice (pattern area). The cavity is also covered with structured cells having a smaller size h ’ H/5.
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Once values of the velocity are available at the vertices of the finite element mesh, values un�1
ijk are interpolated at the

center of each cell ijk in the structured grid. Then the two formulas (15), (16) are implemented on the structured cells to
obtain new values un�1=2

ijk , un
ijk, respectively. We refer to [22] (respectively [20]) for details concerning the implementation

of (15) (respectively (16)).
A validation of the numerical model is proposed in Appendix A. A simple shallow geometry and mass balance function is

considered. The steady shape computed using the numerical method is compared to the analytical solution of the Shallow Ice
Approximation equation.
4. The mass balance function b

The mass balance function b is obtained by simulating accumulation and melt at each point of the glacier surface based on
daily weather data. Melt is calculated using a statistical relation between positive air temperature and melt [15]. The param-
eters involved in the mass balance model have been tuned to fit measured values between 1874 and 2007 optimally [16].

The mass balance b is a function of (x,y,z(x,y, t), t) where z(x,y, t) is the elevation at point (x,y) at time t. Thus, b is a func-
tion of (x,y, t) defined by
Fig. 6.
is mete
157,400
bðx; y; tÞ ¼ Pðx; y; tÞ �Mðx; y; tÞ; ð18Þ
where P corresponds to solid precipitation (snow) and M to melt. The function P is given by
P ¼ Pðx; y; tÞ ¼ PwsðtÞ 1þ dP
dz
ðzðx; y; tÞ � zwsÞ

� �
cprecDISTðx; yÞ; ð19Þ
where Pws is precipitation measured at a nearby weather station at elevation zws, dP/dz and cprec are constant coefficients and
DIST is the distribution pattern of solid precipitation, calculated from the curvature and slope of the terrain. DIST varies be-
tween 0 (complete snow erosion) and 2 (snow deposition). A threshold temperature distinguishes solid from liquid precip-
itation. M is given by
M ¼ Mðx; y; tÞ ¼
ðfM þ rice=snowIðx; y; tÞÞTðx; y; tÞ; if Tðx; y; tÞ > 0;
0; else;

�
ð20Þ
where fM and rice/snow are constant coefficients, I is the potential direct solar radiation [15] and T is the temperature field com-
puted from measured air temperature Tws:
Mass balance function b for (a) 1977 (mass gain of the glacier) and (b) 2003 (mass loss). The dashed line indicates the equilibrium line. The unit of b
r water equivalent. The results are shown using a local system of reference. The abscissa of the lower left corner is 671,250 while the ordinate is

(in the Swiss referential).
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Tðx; y; tÞ ¼ TwsðtÞ � 0:006ðzðx; y; tÞ � zwsÞ:
The five unknown coefficients fM, rice, rsnow, cprec, dP/dz involved in (19) and (20) are calibrated according to several types of
data [16]: (i) ice volume changes, (ii) point-based mass balance measurements and (iii) water discharge. The function b is
computed for each year from 1874 to 2007 and is prescribed in the simulations of Section 5.1. The mass balance function
is depicted in Fig. 6 for two extreme years in terms of accumulation and ablation.

Based on a statistical evaluation of 16 regional climate models in seasonal resolution [9], three scenarios for the future
change in temperature and precipitation have been considered from 2007 to 2100 [17]: two extreme evolutions and a med-
ian scenario. The Scenario 1 (cold–wet) is based on the 2.5% quantile for temperature change and the 97.5% for the precip-
itation change. The Scenario 2 refers to the median for temperature and precipitation change. The Scenario 3 (warm–dry) is
based on the 97.5% quantile for temperature change and the 2.5% for the precipitation change. Each scenario corresponds to a
gradual change of Pws and Tws, see Fig. 7. Thus, the function b is calculated over the period 2007–2100 and is used to drive the
simulations of Section 5.2.

5. Numerical results

Rhonegletscher, the largest glacier of European Alps during the Last Ice Age, has been thoroughly investigated by glaci-
ologists throughout the last century. As many Alpine glaciers, it has significantly retreated since the end of the Little Ice Age
Deviations of annual (a) mean temperature and (b) precipitation from the climate in 1990. Measured data for the 20th century are displayed by bars,
changes as assumed by the three climate scenarios are shown until 2100.

Fig. 8. Pictures of the Rhonegletscher tongue in 1853 (a) and 2008 (b) (source for (a): Alpine Club London).
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around 1850 (Fig. 8). It receded 1.2 km between 1880 and the present day [12]. In the following, the glacier retreat between
1874 – when the first measurements are available – and 2007 is simulated. Subsequently, the three different climatic sce-
narios are considered to predict the surface evolution of the glacier from 2007 to 2100. In all the simulations, the Glen’s
exponent is set to m = 3 (e.g. [14]), and the regularization parameters are set to r0 ¼

ffiffiffiffiffiffiffi
0:1
p

bar and s0 = 0.01 m a�1.
In the following, the numerical implementation is shortly described. At each vertex (xi,yj) of a structured grid in the hor-

izontal rectangle (0,4000 m) � (0,10000 m), the bedrock elevation B(xi,yj) and the initial ice surface S(xi,yj) are provided [7]
(i = 1,80, j = 1,200). The cell size in the x, y directions is 50 m. A triangular finite element mesh of the bedrock is then gen-
erated. A triangular finite element mesh of the top surface of the cavity K is also generated by adding 150 m to the initial ice
thickness. Then, a Delaunay unstructured mesh of tetrahedrons is generated between the two surfaces using TetMesh-
GHS3D [10], thus filling the cavity K with tetrahedrons of typical size 50 m. The MeshAdapt remesher [6] is used in order
to refine the mesh in the Oz direction only (mesh size 10 m). The final mesh of the cavity has 240,147 vertices, see Fig. 9. The
number of vertices of the cavity contained in the initial ice region X0 is 84,161. The block (0,4000 m) �
(0,10000 m) � (1700 m,3600 m) containing the cavity K is cut into 400 � 1000 � 200 structured cells. The cells which do
Fig. 9. Cut of the finite element mesh used for Rhonegletscher in 1874. Left: general view. Right: zoom in the white rectangle. The blue section indicates the
ice domain (VOF > 0.5) while the red section indicates the air domain (VOF < 0.5). The air–ice interface is materialized by the green color (VOF = 0.5). The
mesh size along the bedrock is 50 m while the mesh size along the vertical direction is about 10 m. (For interpretation of the references in color in this figure
legend, the reader is referred to the web version of this article.)

Fig. 10. (a) Outline and level lines of the surface topography of Rhonegletscher on the horizontal plane in 1874. The contour intervals are 100 m. The
rectangle corresponds to the surface considered in subfigures (b) and (c). (b) Measured ice surface velocity at the surface from [24] during the period 1875–
1885. (c) Computed velocity at the surface in 1874 with no slip condition and A = 0.08 bar�3 a�1. The color scale indicates surface velocity in m a�1.
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not belong to the cavity K are not considered in the computation. As in [22] a hierarchic data structure is used in order to
activate the cells and decrease the required memory. The time step is half a year. All the computations have been performed
on an AMD Opteron 242 CPU with less than 8 Gb memory. About 10 days and 3 days are required for performing the sim-
ulations of periods 1874–2007 and 2007–2100, respectively.

5.1. Numerical simulation of Rhonegletscher from 1874 to 2007

The sliding law (7) is subject to higher uncertainties than the flow model (1)–(3), which has been used in several studies
in the past. Consequently, the simulation is first performed with no-slip conditions along the bedrock, thus CS

B ¼ ; and with
A = 0.08 bar�3 a�1 (value taken from [14]). The retreat of the glacier from 1874 to 1900 is significantly too fast in comparison
to observations (discussed later in this section). There are several reasons that may explain this difference: (i) Slip boundary
conditions are not taken into account along the bedrock, (ii) uncertainty in A, (iii) the bedrock location may be inaccurate in
some regions of the glacier and (iv) the ice flow model may not correctly describe glacier dynamics. In order to increase ice
discharge towards the glacier terminus and to decrease the misfit with the measurements of glacier retreat we introduce
basal sliding. The physical parameters A and C, arising respectively in (3) and (8), are adjusted in order to yield the best fit.

At first, a sliding zone CS
B has to be defined. Ice surface velocity has been measured during the period 1875–1885 by sur-

veying the position of colored stones at the glacier surface [23]. The corresponding velocities have been compiled by [24] and
are shown in Fig. 10(b).

The fast ice flow at the glacier terminus during 1875–1885 is remarkable and cannot be explained by ice shear alone.
Although the bedrock is very steep, the ice thickness is too shallow (about 100 m) to allow for a surface speed of
200 m a�1. Obviously, sliding is a very important process in this zone of the glacier, this being due to the high slope of
the glacier and the texture of the bedrock.
1880 1900 1920 1940 1960 1980 2000
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−900
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Simulated with slip

Fig. 11. Comparison of measured and simulated retreat of the glacier tongue between 1880 and 2007. Model runs using no-slip boundary conditions on CB

with A = 0.08 and runs using slip boundary conditions on CS
B with A = 0.10 are shown.

Fig. 12. Simulation of the Rhonegletscher tongue over the period 1874–1900. Left (a): initial glacier extent in 1874. Right, evolution from 1880 to 1900. Top
(b, c, d): no-slip on CB and A = 0.08; bottom (b’, c’, d’): slip on CS

B , A = 0.10.



Fig. 13. Photographs of the Rhonegletscher tongue versus simulations in (a) 1874, (b) 1900, (c) 1932, (d) 1960, and (e) 1985 (source for (a) and (e): http://
www.unifr.ch/geosciences/geographie/glaciers, (b): Wehrli Verlag, Kilchberg, (c): http://gnosis9.net and (d): Verlag O. Süssli-Jenny Thalwil, http://
www.heimatsammlung.de).
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The surface geometry of the year 1874 is known from a topographic map. We assume the surface speed measurements
[23,24] to correspond to this date. According to previous mechanical evidence, sliding occurs where the measured velocities
at the surface are important, the surface slope is steep and the glacier is shallow [26]. The glacier terminus in 1874 combines
all of these features, especially the steepest part which is located in between the abscissa 1000 and 2000 (Fig. 10(b)). More-
over, the preliminary simulation (without sliding) shows that the surface velocity in the region south of the Y-axis 4000 is
overestimated, while it is significantly underestimated in the lower part (Fig. 10(c)). As a consequence, we arbitrarily fix the
sliding area as:
Fig. 14.
picture
CS
B ¼ fðx; y; zÞ 2 CB; y 6 4000g: ð21Þ
Since measurements of the glacier terminus position are available from [12] between 1880 and 2007 several couples (A,C)
have been investigated. (A,C) = (0.1,0.3) yields the best fit. This combination is used to simulate the evolution of Rhoneglet-
scher from 1874 to 2007. The position of the glacier terminus over time is compared between model runs using no-slip
boundary conditions along the bedrock CB, and model runs using slip boundary conditions on the portion CS

B of the bedrock
(Figs. 11 and 12). Whereas measured and simulated glacier length fit very well most of the time, there is a slight misfit be-
tween 1910 and 1945. This is attributed to a complex ice flow regime in the very steep and shallow glacier tongue during
these decades, which could not be captured sufficiently by our model. The simulated extent of the glacier tongue is compared
visually to pictures taken in 1874, 1900, 1932, 1960 and 1985 (Fig. 13).

5.2. Numerical simulation of Rhonegletscher from 2007 to 2100

In order to calibrate the physical parameters for simulating in the future, we use a second series of surface speed mea-
surements from 2006 which have been deduced from aerial photographs [24]. Rhonegletscher was globally much slower in
2006 than it was in 1874. Contrary to the year 1874, a stationary computation for the year 2007 without sliding provides
surface velocities that fit the measurements well enough and the rate factor A = 0.08 bar�3 a�1 yields the best agreement.
Simulation over the period 2007–2100 (from left to right). From top to bottom: Scenario 1, 2 and 3. The total ice volume is displayed below each
.
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Starting from the measured glacier geometry in 2007, the numerical simulation of the surface evolution of Rhonegletscher is
performed until 2100 using no-slip boundary conditions and A = 0.08 bar�3 a�1. The results of simulations based on the three
scenarios presented in Section 4 are displayed in Fig. 14. According to Scenario 2, representing the most probable evolution,
the decrease in ice volume until 2050 is moderate (�34% compared to 2007). In the second half of the 21st century a dra-
matic glacier wastage is expected, leading to the reduction of Rhonegletscher to a small ice field at an elevation of more than
3000 m a.s.l. (Fig. 14). Simulations based on Scenario 3 (warm–dry) even show a complete disappearance of the ice mass by
2075. Scenario 1 (cold–wet), in contrast, only causes minor changes in the glacier extent throughout the 21st century. By
2100 a volume change of only �33% is anticipated. Our model results show a high probability that Alpine glaciers will recede
significantly during the next decades. However, the uncertainty of climatic projections is still high and allows for a wide
range of possible glacier changes in the near future.
6. Conclusions

The simulation of Rhonegletscher has been performed by combining an ice flow model [20] with a mass balance model
[16]. A variety of data collected during the last century enables both models to be adjusted. The three dimensional evolution
of the glacier is computed by solving a nonlinear Stokes equation coupled to a volume fraction of ice formulation. The use of
two specific meshes for solving diffusion and advection problems divides appropriately the needs of memory and computa-
tional time. The numerical method proves to be suitable for accounting for complex glacier geometries, even with separated
ice domains (Fig. 14). A simple parameterization of sliding along the bedrock is introduced and significantly increases the
power of the model to match observations of glacier retreat.

This combined glacier mass balance and ice-flow model allows us to reconstruct the three dimensional change of alpine
glaciers in the past and to make predictions of future glacier wastage under climate change conditions. Our results show that
the model accurately reproduces the observed glacier change and ice surface velocities over a time period of more than a
century. The forecasts given in the last section confirm the trend of the retreat of Alpine glaciers in the 21st century. The
simulation based on the most realistic assumptions for future climate change predicts a dramatic retreat of Rhonegletscher
during the 21st century. By 2100 only a small ice field will be left. The model presented in this paper has a high potential to
predict the impact of climate change on alpine glaciers during the coming decades. This is of immediate interest for scien-
tists, but also for tourism and economy in alpine environments.
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Appendix A. Numerical validation: A comparison between a Shallow Ice Approximation and the full Stokes model

A three-dimensional stationary shallow ice sheet, radial-symmetric of height H0 and radius L� H0 is considered. Since
the ratio H0

L is small, the model can be simplified into a Shallow Ice Approximation [18,21]. When r0 = 0 in Glen’s flow
law (3), the model reduces to an equation for the ice sheet height H = H(r), see [2]:
�2ðqkgkÞmA
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¼ bðrÞ; ðA:1Þ
where the mass balance function b is a function of the radial coordinate defined by r ¼
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with a > 0, then the analytic solution of (A.1) such that H(L) = 0 is given by [2]:
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where H0 = H(0) is the maximum ice sheet thickness.



Fig. A.1. Numerical validation with a shallow ice sheet. Section of the steady shape with respect to the radial distance r. Dashed line: computed shape,
continuous line: analytic solution of shallow ice approximation (A.3).
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The ice thickness function H can be associated to the volume fraction of ice u by using Eqs. (15) and (16) of [20].
In the following experiment, we set L = 2000 m and a so that we obtain H0 ’ 190 m. In Glen’s law (3), we set m = 3,

A = 0.08 bar�3 a�1 and r0 ¼
ffiffiffiffiffiffiffi
0:1
p

bar. A tetrahedral mesh of the cavity K of size 5000 m � 5000 m � 200 m containing the
radial ice sheet is generated. The mesh has 153,796 vertices while the structured grid is composed by 500 � 500 � 20 cells.
At initial time the cavity contains no ice, X0 = ;. The simulation is performed with no-slip conditions along the flat base. The
time step is one year, a steady state geometry is observed after 1000 years. The steady shape computed and the exact solu-
tion (A.3) are drawn together in Fig. A.1 for being compared. The well fit between these two curves validates the numerical
method presented in Section 3.
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